Metal-substituted protein MRI contrast agents engineered for enhanced relaxivity and ligand sensitivity.

نویسندگان

  • Victor S Lelyveld
  • Eric Brustad
  • Frances H Arnold
  • Alan Jasanoff
چکیده

Engineered metalloproteins constitute a flexible new class of analyte-sensitive molecular imaging agents detectable by magnetic resonance imaging (MRI), but their contrast effects are generally weaker than synthetic agents. To augment the proton relaxivity of agents derived from the heme domain of cytochrome P450 BM3 (BM3h), we formed manganese(III)-containing proteins that have higher electron spin than their native ferric iron counterparts. Metal substitution was achieved by coexpressing BM3h variants with the bacterial heme transporter ChuA in Escherichia coli and supplementing the growth medium with Mn3+-protoporphyrin IX. Manganic BM3h variants exhibited up to 2.6-fold higher T1 relaxivities relative to native BM3h at 4.7 T. Application of ChuA-mediated porphyrin substitution to a collection of thermostable chimeric P450 domains resulted in a stable, high-relaxivity BM3h derivative displaying a 63% relaxivity change upon binding of arachidonic acid, a natural ligand for the P450 enzyme and an important component of biological signaling pathways. This work demonstrates that protein-based MRI sensors with robust ligand sensitivity may be created with ease by including metal substitution among the toolkit of methods available to the protein engineer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Novel Protein-based MRI Contrast Agernets with High Relaxivity and Stability for Biomedical Imaging

Magnetic resonance imaging (MRI) is the leading imaging technique for disease diagnostics. MRI contrast agents facilitate MRI technique to obtain tissue-specific image with improved sensitivity and signal-to-noise ratio. However, the applications of current MRI contrast agents are hampered by their uncontrolled blood circulation time, low relaxivity, and low specificity. To address such need, I...

متن کامل

A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...

متن کامل

Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects.

Magnetic resonance imaging (MRI) contrast agents with both positive (T1) and negative (T2) contrast abilities are needed in clinical diagnosis for fault-free accurate detection of lesions. We report a facile synthesis of europium-engineered iron oxide (EuIO) nanocubes as T1 and T2 contrast agents for MRI in living subjects. The Eu(iii) oxide-embedded iron oxide nanoparticles significantly incre...

متن کامل

Optimization of Expression and Purification Methods for the Study of Protein-Based Magnetic Resonance Imaging Contrast Agents

Magnetic Resonance Imaging instruments rely on a contrast agent to provide high-resolution images of tissues in vivo. However, current clinical contrast agents are hindered by low relaxivity and fast correlation time, necessitating high injection dosages. These concerns, among others, have driven the development of a class of protein-based contrast agents (ProCAs), by design of lanthanide bindi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 133 4  شماره 

صفحات  -

تاریخ انتشار 2011